Activation of cryptic 3' splice sites within introns of cellular genes following gene entrapment.
نویسندگان
چکیده
Gene trap vectors developed for genome-wide mutagenesis can be used to study factors governing the expression of exons inserted throughout the genome. For example, entrapment vectors consisting of a partial 3'-terminal exon [i.e. a neomycin resistance gene (Neo), a poly(A) site, but no 3' splice site] were typically expressed following insertion into introns, from cellular transcripts that spliced to cryptic 3' splice sites present either within the targeting vector or in the adjacent intron. A vector (U3NeoSV1) containing the wild-type Neo sequence preferentially disrupted genes that spliced in-frame to a cryptic 3' splice site in the Neo coding sequence and expressed functional neomycin phosphotransferase fusion proteins. Removal of the cryptic Neo 3' splice site did not reduce the proportion of clones with inserts in introns; rather, the fusion transcripts utilized cryptic 3' splice sites present in the adjacent intron or generated by virus integration. However, gene entrapment with U3NeoSV2 was considerably more random than with U3NeoSV1, consistent with the widespread occurrence of potential 3' splice site sequences in the introns of cellular genes. These results clarify the mechanisms of gene entrapment by U3 gene trap vectors and illustrate features of exon definition required for 3' processing and polyadenylation of cellular transcripts.
منابع مشابه
Exon Junction Sequences as Cryptic Splice Sites Implications for Intron Origin
Introns are flanked by a partially conserved coding sequence that forms the immediate exon junction sequence following intron removal from pre-mRNA. Phylogenetic evidence indicates that these sequences have been targeted by numerous intron insertions during evolution, but little is known about this process. Here, we test the prediction that exon junction sequences were functional splice sites t...
متن کاملCryptic intron activation within the large exon of the mouse polymeric immunoglobulin receptor gene: cryptic splice sites correspond to protein domain boundaries.
The fourth exon of the mouse polymeric immuno-globulin receptor (pIgR) is 654 nt long and, despite being surrounded by large introns, is constitutively spliced into the mRNA. Deletion of an 84 nt sequence from this exon strongly activated both cryptic 5' and 3' splice sites surrounding a 78 nt cryptic intron. The 84 nt deletion is just upstream of the cryptic 3' splice site; the cryptic 3' spli...
متن کاملCryptic splice sites and split genes
We describe a new program called cryptic splice finder (CSF) that can reliably identify cryptic splice sites (css), so providing a useful tool to help investigate splicing mutations in genetic disease. We report that many css are not entirely dormant and are often already active at low levels in normal genes prior to their enhancement in genetic disease. We also report a fascinating correlation...
متن کاملDBASS3 and DBASS5: databases of aberrant 3′- and 5′-splice sites
DBASS3 and DBASS5 provide comprehensive repositories of new exon boundaries that were induced by pathogenic mutations in human disease genes. Aberrant 5'- and 3'-splice sites were activated either by mutations in the consensus sequences of natural exon-intron junctions (cryptic sites) or elsewhere ('de novo' sites). DBASS3 and DBASS5 currently contain approximately 900 records of cryptic and de...
متن کاملOutcome of donor splice site mutations accounting for congenital afibrinogenemia reflects order of intron removal in the fibrinogen alpha gene (FGA).
Congenital afibrinogenemia (Mendelian Inheritance in Man #202400) is a rare, autosomal recessive disorder characterized by the complete absence of circulating fibrinogen. Our recent studies on the molecular basis of the disease showed that the most common genetic defect is a donor splice mutation in fibrinogen alpha gene (FGA) intron 4, IVS4+1G>T. Two other FGA donor splice mutations, in intron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 32 9 شماره
صفحات -
تاریخ انتشار 2004